Markerless human articulated tracking using hierarchical particle swarm optimisation
نویسندگان
چکیده
Please cite this article in press as: V. John et al., M (2010), doi:10.1016/j.imavis.2010.03.008 In this paper, we address markerless full-body articulated human motion tracking from multi-view video sequences acquired in a studio environment. The tracking is formulated as a multi-dimensional non-linear optimisation and solved using particle swarm optimisation (PSO), a swarm-intelligence algorithm which has gained popularity in recent years due to its ability to solve difficult non-linear optimisation problems. We show that a small number of particles achieves accuracy levels comparable with several recent algorithms. PSO initialises automatically, does not need a sequence-specific motion model and recovers from temporary tracking divergence through the use of a powerful hierarchical search algorithm (HPSO). We compare experimentally HPSO with particle filter (PF), annealed particle filter (APF) and partitioned sampling annealed particle filter (PSAPF) using the computational framework provided by Balan et al. HPSO accuracy and consistency are better than PF and compare favourably with those of APF and PSAPF, outperforming it in sequences with sudden and fast motion. We also report an extensive experimental study of HPSO over ranges of values of its parameters. 2010 Elsevier B.V. All rights reserved.
منابع مشابه
Markerless Human Motion Capture Using Hierarchical Particle Swarm Optimisation
In this paper, we address full-body articulated human motion tracking from multi-view video sequences acquired in a studio environment. The tracking is formulated as a multi-dimensional nonlinear optimisation and solved using particle swarm optimisation (PSO), a swarm-intelligence algorithm which has gained popularity in recent years due to its ability to solve difficult nonlinear optimisation ...
متن کاملMarkerless Articulated Human Body Tracking from Multi-view Video with GPU-PSO
In this paper, we describe the GPU implementation of a markerless full-body articulated human motion tracking system from multi-view video sequences acquired in a studio environment. The tracking is formulated as a multidimensional nonlinear optimisation problem solved using particle swarm optimisation (PSO). We model the human body pose with a skeleton-driven subdivisionsurface human body mode...
متن کاملMarkerless Multi-view Articulated Pose Estimation Using Adaptive Hierarchical Particle Swarm Optimisation
In this paper, we present a new adaptive approach to multi-view markerless articulated human body pose estimation from multi-view video sequences, using Particle Swarm Optimisation (PSO). We address the computational complexity of the recently developed hierarchical PSO (HPSO) approach, which successfully estimated a wide range of different motion with a fixed set of parameters, but incurred an...
متن کاملMarkerless Human Motion Tracking Using Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization
The high-dimensional search space involved in markerless full-body articulated human motion tracking from multiple-views video sequences has led to a number of solutions based on metaheuristics, the most recent form of which is Particle Swarm Optimization (PSO). However, the classical PSO suffers from premature convergence and it is trapped easily into local optima, significantly affecting the ...
متن کاملArticulated Human Motion Tracking with HPSO
In this paper, we address full-body articulated human motion tracking from multi-view video sequences acquired in a studio environment. The tracking is formulated as a multi-dimensional nonlinear optimisation and solved using particle swarm optimisation (PSO), a swarm-intelligence algorithm which has gained popularity in recent years due to its ability to solve difficult nonlinear optimisation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Image Vision Comput.
دوره 28 شماره
صفحات -
تاریخ انتشار 2010